Identification of methyl O-methylpentopyranosides by mass spectrometry

VINCENT MIHÁLOV, VLADIMÍR KOVÁČIK, AND PAVOL KOVÁČ

Institute of Chemistry, Slovak Academy of Sciences, 809 33 Bratislava (Czechoslovakia)
(Received July 12th, 1978; accepted for publication, August 28th, 1978)

The comparison of electron-impact mass-spectral fragmentation of partially methylated methyl hexopyranosides^{1,2}, methyl 6-deoxyhexopyranosides³, methyl (methyl hexopyranosid)uronates^{4,5}, methyl hexopyranosiduronamides⁶, and methyl (methyl 4-deoxy-β-L-threo-hex-4-enopyranosid)uronates⁷ with that of their fully methylated analogues⁷⁻¹¹ showed that the presence of free hydroxyl groups results not only in a shift of the ion masses but also in a change of their abundances. The molecular ions of methyl O-methylpyranosides containing free hydroxyl groups disintegrate by processes occurring with fully methylated derivatives and also by other pathways. The important factors determining the individual fission processes are the substituent at C-5 of the tetrahydropyran ring and the location of the free hydroxyl group(s). We now report on a comparison of the fragmentation of methyl O-methylpentopyranosides with that¹²⁻¹⁴ of their fully methylated analogues. These data are useful for the determination, without derivatisation, of the number and the location of methyl groups in the title compounds.

$$R^{2}$$
 R^{3} R^{4}

1 H H H

2 Me H H

3 H H Me

4 Me Me H

5 Me H Me

6 H Me Me

1-7 7 Me Me Me

8 R^{1} = H, R^{2} = Me

9 R^{1} = Me, R^{2} = H

The compounds studied include the series of methyl O-methyl- β -L-arabino-pyranosides (1–7), methyl 3-O-methyl- β -D-xylopyranoside (8), and their O-deuterated analogues. Compounds 1–7 were prepared by known procedures^{15–19}, and 8 was synthesised by treatment of methyl 2,3-anhydro- β -D-ribopyranoside with sodium methoxide in methanol (cf. Ref. 20).

Since there is a stereochemical difference between 8 and the series of methyl O-methyl- β -L-arabinopyranosides, the effect of this factor on the mass spectra was

TABLE I ${\tt MASS-SPECTRAL\ DATA}^a\ {\tt FOR\ METHYL\ }\textit{O-METHYLPENTOPYRANOSIDES\ }\textbf{1-8}$

m/e	$\%$ Σ_{45} $ imes$ 100										
		26	3	4	2,3	2,4	3,4	2,3,4			
176					•			168			
175								64			
162					20	32	12				
161					385	50	321				
148		8	8	10							
147		64	83	46							
146			20								
143						12		51			
134	10										
133	65										
131								32			
130		49		23	81		41	-			
129		39	8	23	235		73				
117			13								
116			46								
115	32	42	53			57	36	168			
114	16	56	401	40	128		64				
105	10		18		8		10	12			
103		24	27	28	Ū		10				
101		49	60	75	535 🕏	3066	321	3160			
100	40	49	160	34	85	3000	96	5100			
99	40	43	36	40	85		59	109			
97			50	28	05		27	103			
91	28			20			21				
88	20	593			1939	192	344	2257			
87	77	2018	435	2018	685	514	1216	58			
86	106	2010	267	46	005	314	1210	50			
85	90	568	174	75	449	115	73	64			
83	30	200	174	13	447	113	13	96			
75			1472	150	1740		1825	1616			
74	1064	3213	2778	927	878	3312	2225	1010			
73	1556	296	435	434	856	154	151	904			
73 72	1550	290	433	434	64	154	78	304			
71	573	138	328	75	154	141	76 458	122			
69	73	98	401	156	257	90	458	51			
68	75	70	93	46	231	90	436	38			
61	1187	494	468	57	128	102	68	20			
60	3634	444	130	1942	120	102	00				
					154	£1.4	412	0.4			
59 58	163 65	593 84	803	1159	154	514 546	413	84			
			164	1304	110	546	711	387			
57 56	532	182	307	579	119	154	119	58			
56 55	49 98	74	76 120	02			60	100			
	30	/4	120	92			68	109			
53 45	£22	015	600	670	1000	000	50.	58			
45	532	815	602	579	1006	932	734	323			

^a12 eV. ^bThe numbers refer to the positions of methyl groups.

TABLE II

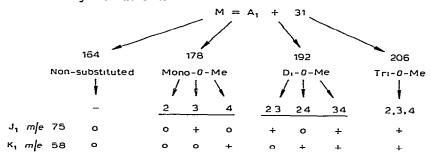
CHARACTERISTIC FEATURES OF THE FRAGMENTATION OF METHYL O-METHYLPENTOPYRANOSIDES 1-8

Symbol of ions	m/e	$\%$ Σ_{45} ^a							
		_	26	3	4	2,3	2,4	3,4	2,3,4
A ₁	175								
	161								
	147								
	133								
$A_1 - ROH$	143						•		
	129								
	115	•	•						
$\mathbf{B_{i}}$	176								
	162					•			
	148			•	•				
	134	-							
$B_1 - ROH$	130								
	116								
$B_1 - \cdot CH_2OMe$	131								
	117								
D DOV. 01.	103			•	•				
$B_1 - ROH - CH_2OMe$	85	• •	x	• • •	•	• • •	• • •		
	71	x					• • •	• • •	• • •
M — MeOH	146			•					
M — 2MeOH	114		•	•	•				
$C_1 - ROH$	114					• • •		• •	
	100	•	•	• • •	•	• •		•	
G 05	86	• • •	• • •						
$C_1 - \cdot OR$	115						- •	-	
D	101		-	• •	• •				
$\mathbf{D_1}$	105			•		•		•	•
F ₁	101					х	XXX	• • •	XXX
	87		XXX		XXX	XX	x	XX	
TT	73	XX		• • •	• • •				
H ₁	88		x			xx	• • •	• • •	xxx
	74	ХX	XXX	xxx	x	x	XXX	λXX	
H_2	60	XXX	• •		XX				
п2	73 50					x			х
J_1	59 75		x	×	xx		×		
,	75			XX		xx	• • •	xx	xx
K ₁	61 50	XX	• • •	• • •	• •			• •	
1.71	58	• •	• •	• • •	xx		х	х	• • •

^aPeak intensities: ., < 0.5%; ., 0.5-1.0%; .. , 1-5%; x, 5-10%; xx, 10-20%; xxx, > 20%. ^bThe numbers refer to the positions of the methyl groups.

first investigated. The 70- and 12-eV spectra of 5 and methyl 2,4-di-O-methyl- β -D-xylopyranoside (9) were qualitatively identical, with minor differences in the intensity of a few peaks. The 12-eV spectra of 1-8 are given in Table I, and the characteristic features of the fragmentation of 1-8 are shown in Table II.

The fragmentation of the partially methylated derivatives 1-6 and 8 occurs


only in part according to the A-K Series established for the fully methylated pento-pyranosides¹²⁻¹⁴ (cf. the data for 7 in Tables I and II). Only ~10-20% of the $[M-31]^+$ ions, formed from 1-4, 6, and 8 having a free hydroxyl group at C-2 or C-4, belong to the common A_1 species of structure 10. A larger proportion of the $[M-31]^+$ fragments are furanoid, $[M-CH_2OH]^+$ E_1 -ions having structure 11. Their formation involves a process in which the leaving fragment contains C-5, the hemiacetal oxygen, and the hydrogen atom of the hydroxyl group. The formulation of the furanoid ions 11 (cf. Heyns et al.¹) reflects their formation after a transfer of hydrogen from HO-4. The substituents in parentheses in 11 represent ions formed after a transfer of hydrogen from HO-2. The m/e values in parentheses for Formulae 10 and 11 were extracted from the spectra of O-deuterated compounds.

10 A₁ m/e 175,161 (162),147 (149),133 (136) 11 E₁, fur m/e 161 (161),147 (148),133 (135)

The foregoing ions disintegrate next *via* eliminations of methanol and water. In the B and C Series, the eliminations are preferred to the fission of radicals; the hydroxyl groups take part in the former processes, as shown by O-deuteration. Characteristic of the 3-O-methyl derivative 8 is the elimination of methanol from the molecular ions, to give rise to ion radicals $[M - MeOH]^+$ and $[M - 2MeOH]^+$ having signals at m/e 146 and 114. In these eliminations, observed also in the fragmentation of methyl 3-O-methyl- α -L-rhamnopyranoside, the hydrogen atoms of the hydroxyl groups also take part. The elimination and radical fissions of the B₁ ions give rise to ions $[B_1 - ROH - CH_2OMe]^+$ at m/e 85 and 71 having the elemental compositions $C_4H_5O_2$ and $C_3H_3O_2$, respectively. A portion of the peak at m/e 71 represents particles having the composition C_4H_7O . The foregoing cleavage reactions were confirmed by metastable-transition measurements.

The formation of D_1 ions of low intensity was observed only with the 3-O-methylated derivatives 4, 6, and 8. The intense fragments produced from these substances are J_1 ions, whereas intense K_1 ions are formed from compounds 3, 5, and 6 methylated at O-4.

Scheme 1

The 70- and 12-eV mass spectra of the methyl O-methylpentopyranosides 1-8 (Table I) show pronounced characteristics that can be used to determine the number and location of the methoxyl groups. The simplest interpretation of the spectra for analytical purposes, based on the peaks for A_1 , J_1 , and K_1 ions, is given in Scheme 1. When an unknown substance is being identified, the low-intensity ($\sim 5\%$) peaks at m/e 75 and/or 58 should be neglected.

In conclusion, it can be stated that, except for the stereochemistry, methyl O-methylpentosides can be unambiguously identified by mass spectrometry alone and without derivatisation.

EXPERIMENTAL

Methyl β -L-arabinopyranoside (1) and its per-O-methyl derivative 7 were prepared according to published procedures^{15,16}. The syntheses of 2–6 and 9 have been described^{17–19,22}.

Mass spectra (70- and 12-eV; emission, $100 \mu A$) were obtained with a JMS D-100 instrument. The temperature at the site of evaporation was $25-160^{\circ}$ and that in the ionising chamber was 180° . Exact mass measurement was performed at a resolution of 10,000. Metastable-transition measurements were performed by using a metastable-ion detector MS-MT-01.

¹³C-N.m.r. spectra and p.m.r. spectra were measured with JEOL FX 60 and FX 100 Spectrometers (internal Me₄Si).

Methyl 3-O-methyl-β-D-xylopyranoside (8). — Sodium (1 g) was dissolved in dry methanol (25 ml) and, after addition of methyl 2,3-anhydro-β-D-ribopyranoside²³ (1 g), the solution was boiled under reflux, with the exclusion of atmospheric moisture and carbon dioxide, for 24 h. T.l.c. (chloroform-acetone 10:1) then revealed only traces of the starting material (R_F 0.5). After deionization with Dowex-50 W(H⁺) resin, decoloration with charcoal, and concentration, the residue was crystallised from ethyl acetate-ether to give a chromatographically pure product (880 mg, 72%), R_F 0.3 (chloroform-acetone 3:1). Recrystallization from the same solvent (twice) gave 8, m.p. 102.5–103°, $[\alpha]_D^{22}$ –85.7° (c 1.02, chloroform) (Found: C, 47.23; H, 8.01. C₇H₁₄O₅ calc.: C, 47.18, H, 7.91%). ¹³C-N.m.r. data: δ –104.3 (C-1), –73.10 (C-2), –84.90 (C-3), –69.03 (C-4), –64.97 (C-5), –57.09 (MeO-1), and –60.50 (MeO-3). P.m.r. data: δ 4.19 (d, 1 H, $J_{1,2}$ 6.7 Hz, H-1), 3.44 (q, 1 H, $J_{2,3}$ 7.9 Hz, H-2), 3.15 (t, 1 H, $J_{3,4}$ 8 Hz, H-3), 3.70 (o, 1 H, $J_{4,5}$ 9, $J_{4,5'}$ 4.7 Hz, H-4), 3.28 (q, 1 H, H-5), 4.01 (q, 1 H, 2J 11 Hz, H-5'), 3.65 and 3.53 (2 s, 6 H, 2 OMe), and 3.02 (bs, 2 H, disappears on deuteration, OH).

REFERENCES

- 1 K. HEYNS, K. R. SPERLING, AND H. F. GRUTZMACHER, Carbohydr. Res., 9 (1969) 79-97.
- 2 V. Kováčik and P. Kováč, Chem. Zvesti, 27 (1973) 662-667.
- 3 V. Kováčik, V. Mihálov, Š. Karácsonyi, and R. Toman, Carbohydr. Res., 58 (1977) 203-208
- 4 V. Kováčik and P. Kováč, Org. Mass Spectrom, 10 (1975) 376-383.
- 5 V. Kováčik, V. Mihálov, and P. Kováč, Chem. Zvesti, 32 (1978) 258-266.

- 6 V. Mihálov, V. Kováčik, and P. Kováč, Carbohydr. Res., 70 (1979) 239-246.
- 7 V. Kováčik and P. Kováč, Anal. Biochem., 64 (1975) 45-52.
- 8 N. K. Kochetkov, N. S. Wulfson, O. S. Chizhov, and B. M. Zolotarev, *Tetrahedron*, 19 (1963) 2209–2224.
- 9 N. K. KOCHETKOV AND O. S. CHIZHOV, Tetrahedron, 21 (1965) 2029-2047.
- 10 N. K. KOCHETKOV, O. S. CHIZHOV, B. M ZOLOTAREV, AND V. S. SHEJNKER, Izv. Akad. Nauk SSSR, Ser. Khim., 3 (1967) 543-548.
- 11 V. Kováčik and P. Kováč, Org. Mass Spectrom., 9 (1974) 172-180.
- 12 V. Kováčik and P. Kováč, Carbohydr. Res., 38 (1974) 25-34.
- 13 K. HEYNS AND D. MÜLLER, Tetrahedron, 21 (1965) 55-68.
- 14 K. HEYNS AND H. SCHARMANN, Tetrahedron, 21 (1965) 507-513.
- 15 M. A. Oldham and J. Honeyman, J. Chem. Soc, (1946) 986-989.
- 16 S. C. WILLIAMS AND J. K. N. JONES, Can. J. Chem., 45 (1967) 275-290.
- 17 P. Kováč and R. Palovčík, Carbohydr. Res., 36 (1974) 379–384.
- 18 H. E. DEKANOSIDZE, J. HIRSCH, AND P. KOVÁČ, Bull. Acad. Sci. Georgian SSR, 74 (1974) 361-364.
- 19 P. Kováč, Carbohydr. Res., 20 (1971) 418-420.
- 20 R. D. GUTHRIE, in W. PIGMAN AND D. HORTON (Eds.), The Carbohydrates, Vol. IA., Academic Press, 1972, pp. 423-497.
- 21 V. Kováčik and P. Kováč, Carbohydr. Res., 24 (1972) 23-28.
- 22 P. Kováč and J. Hirsch, Chem. Zvesti, 27 (1973) 668-675.
- 23 L. HOUGH AND J. K. N. JONES, J. Chem Soc , (1952) 4349-4351